188 research outputs found

    Optimal External Memory Interval Management

    Get PDF
    This is the publisher's version, which is being shared on KU Scholarworks with permission. The original version may be found at the following link: http://dx.doi.org/10.1137/S009753970240481XIn this paper we present the external interval tree, an optimal external memory data structure for answering stabbing queries on a set of dynamically maintained intervals. The external interval tree can be usedin an optimal solution to the dynamic interval management problem, which is a central problem for object-orientedandtemp oral databases andfor constraint logic programming. Part of the structure uses a weight-balancing technique for efficient worst-case manipulation of balanced trees, which is of independent interest. The external interval tree, as well as our new balancing technique, have recently been used to develop several efficient external data structures

    Optimal External Memory Interval Management

    Get PDF
    AMS subject classifications. 68P05, 68P10, 68P15 DOI. 10.1137/S009753970240481XIn this paper we present the external interval tree, an optimal external memory data structure for answering stabbing queries on a set of dynamically maintained intervals. The external interval tree can be usedin an optimal solution to the dynamic interval management problem, which is a central problem for object-orientedandtemp oral databases andfor constraint logic programming.Part of the structure uses a weight-balancing technique for efficient worst-case manipulation of balanced trees, which is of independent interest. The external interval tree, as well as our new balancing technique, have recently been used to develop several efficient external data structures

    Maintaining Contour Trees of Dynamic Terrains

    Full text link
    We consider maintaining the contour tree T\mathbb{T} of a piecewise-linear triangulation M\mathbb{M} that is the graph of a time varying height function h:R2Rh: \mathbb{R}^2 \rightarrow \mathbb{R}. We carefully describe the combinatorial change in T\mathbb{T} that happen as hh varies over time and how these changes relate to topological changes in M\mathbb{M}. We present a kinetic data structure that maintains the contour tree of hh over time. Our data structure maintains certificates that fail only when h(v)=h(u)h(v)=h(u) for two adjacent vertices vv and uu in M\mathbb{M}, or when two saddle vertices lie on the same contour of M\mathbb{M}. A certificate failure is handled in O(log(n))O(\log(n)) time. We also show how our data structure can be extended to handle a set of general update operations on M\mathbb{M} and how it can be applied to maintain topological persistence pairs of time varying functions

    08081 Abstracts Collection -- Data Structures

    Get PDF
    From February 17th to 22nd 2008, the Dagstuhl Seminar 08081 ``Data Structures\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. It brought together 49 researchers from four continents to discuss recent developments concerning data structures in terms of research but also in terms of new technologies that impact how data can be stored, updated, and retrieved. During the seminar a fair number of participants presented their current research. There was discussion of ongoing work, and in addition an open problem session was held. This paper first describes the seminar topics and goals in general, then gives the minutes of the open problem session, and concludes with abstracts of the presentations given during the seminar. Where appropriate and available, links to extended abstracts or full papers are provided

    Optimal External Memory Interval Management

    Get PDF
    This is the published version. Copyright © 2003 Society for Industrial and Applied MathematicsIn this paper we present the external interval tree, an optimal external memory data structure for answering stabbing queries on a set of dynamically maintained intervals. The external interval tree can be used in an optimal solution to the dynamic interval management problem, which is a central problem for object-oriented and temporal databases and for constraint logic programming. Part of the structure uses a weight-balancing technique for efficient worst-case manipulation of balanced trees, which is of independent interest. The external interval tree, as well as our new balancing technique, have recently been used to develop several efficient external data structures

    10091 Abstracts Collection -- Data Structures

    Get PDF
    From February 28th to March 5th 2010, the Dagstuhl Seminar 10091 "Data Structures" was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. It brought together 45 international researchers to discuss recent developments concerning data structures in terms of research, but also in terms of new technologies that impact how data can be stored, updated, and retrieved. During the seminar a fair number of participants presented their current research and open problems where discussed. This document first briefly describes the seminar topics and then gives the abstracts of the presentations given during the seminar
    corecore